

Pillar Coral, *Dendrogyra cylindrus* The Bahamas

Authors: Nikita Shiel-Rolle

Suggested citation: Shiel-Rolle. N. (Compiler) 2015. A survival blueprint for pillar coral, *Dendrogyra cylindrus*. Young Marine Explorers, Nassau, The Bahamas.

1. STATUS REVIEW

1.1 Taxonomy:

Phylum: Cnidaria; Class: Anthozoa; Sub-class: Hexacorallia; Order: Scleractinia Family: Meandrinidae; Genus: *Dengrogyra*

Common name: Pillar coral

1.2 Distribution and population status:

1.2.1 Global distribution:

Country	Population estimate (plus references)	Distribution	Population trend (plus references)	Notes
Florida, USA	Presence confirmed, Rare distribution, Population Estimate (Miller et al 2010)	Rare and uncommon however can occur in densely populated patches usually a result of fragmentation	Unknown	Threatened and protected by the US Endangered Species Act
US Virgin Islands	Presence confirmed, Rare distribution, Current Population Estimate (Rogers et al. 1984)	Rare and uncommon however can occur in densely populated patches usually a result of fragmentation	Unknown	Threatened and protected by the US Endangered Species Act
Curacao	Presence confirmed, Rare distribution, Population Estimate? (Bak & Engel 1979) (Vermeij et al. 2011)	Rare and uncommon however can occur in densely populated patches usually a result of fragmentation	Unknown	None
The Bahamas	Presence confirmed, Rare distribution, Population Estimate? Unpublished	Rare and uncommon however can occur in densely populated patches usually	Unknown	None

	AGRAA data and Unpublished data K. Sealey	a result of fragmentation		
Colombia	Presence confirmed, Rare distribution, Population Estimate (Acosta & Acevedo 2006)	Rare and uncommon however can occur in densely populated patches usually a result of fragmentation	Unknown	None
Puerto Rico	Presence confirmed, Rare distribution, Population Estimate (Irizarry- Soto &, Weil 2009)	Rare and uncommon however can occur in densely populated patches usually a result of fragmentation	Unknown	Threatened and protected by the US Endangered Species Act

1.2.2 Local distribution:

Country	Region / province	Site	Level of Protection	Population size	Reference(s)	Notes
The Bahamas	New Providence	Clifton Heritage Park	None	2 colonies identified	NSR Unpublished data	Highly threatened areas, excessive oil pollution, unhealthy colonies
	Cat Island	North Cat Island off Man o War point	None	20+ colonies	NSR Unpublished data	Healthy colonies with multiple pillars
		South Cat Island off of Port Howe	None	20+ Colonies	NSR Unpublished data	Healthy colonies with multiple pillars
	Exuma Cays	Exuma Cays Land	No Take Zone	6+ Colonies	NSR Unpublished data	Healthy Colonies where identified

		and Sea Park				
	Exuma	Moriah Harbour	None	2 colonies	NSR Unpublished data	NA
	Spanish Wells	Egg Island	None	2 colonies	NSR Unpublished data	NA
The Bahamas	Andros	Andros	None	Undetermined	AGRAA Raw Data	NA
	Abaco	Abaco	None	Undetermined	AGRAA Raw DATA	NA
	Acklines	Acklines	None	Undetermined	AGRAA Raw Data	NA

1.3 Protection status:

Dendrogyra cylindrus has recently been listed as a threatened species under the Unites States Endangered Species Act. The IUCN Red List has *D. cylindrus* listed as Vulnerable based on criteria A4ce ver 3.1. There is no current protection to *D. cylindrus* within The Bahamas.

1.4 Ecology, behaviour and habitat requirements:

An uncommon but conspicuous species (Veron 2000) that usually has a low abundance, it can however be locally abundant in shallow well circulated areas due to propagation by fragmentation (Aronson, Bruckner et al. 2008a). Colonies of *D. cylindrus* are generally found on flat or gently sloping back and fore reefs (Aronson, Bruckner et al. 2008a) however, isolated colonies can be found across a range of habitats (Brainard, Birkeland et al. 2011). Colonies can be found between 1m-25 m being most common between 5 m-15 m (Aronson, Bruckner et al. 2008a).

Dendrogyra cylindrus has an encrusting base on which cylindrical columns developed vertically. The columns can reach up to 2 m in height. The valleys are meandroid and the septo-costae are thick in two alternating orders; they do not join at the tops of valleys and thus leave a neat groove along the tops of walls. Colonies are generally grey-brown in colour and the tentacles remain extended during the day, which gives the columns a furry appearance (Veron 2000). As gonochoric spawners (Szmant 1986) with low population densities, this reproductive mode yields very little potential for successful fertilization and larval supply (Brainard, Birkeland et al. 2011). *D. cylindrus* has proven to be effective in propagation by fragmentation (Hudson and Goodwin 1997). Growth rates for *D. cylindrus* have been measured at 12 mm - 20 mm per year in Florida (Hudson and Goodwin 1997) and 8mm (0.8 cm) in other locations within the Caribbean (Hughes 1987, Acosta and Acevedo 2006). *D. cylindrus* has a relatively high photosynthetic rate where the stable isotope values suggest it receives substantial amounts of photosynthetic products translocated from its zooxanthellae (Muscatine, Porter et al. 1989).

1.5 Threat analysis:

Threat	Description of how this threat impacts the species	Intensity of threat (low, medium, high, critical or unknown)
Coastal development	Impacts pillar coral and reef systems through sedimentation from poorly managed construction sites and dredging operations. Clearing of land, filling of wetlands and the removal of coastal plants increase eutrophication. Toxins and oils entering coastal waters reduce water quality inhibiting photosynthesis.	Unknown
Overexploitation of harvested resources	Results in the reduction of herbivores that results in the flourishing of macroalgae that compete with pillar coral and other corals and removes suitable space for settlement of planktonic larvae.	Medium
Marine construction	Physically removes coral and destroys supporting habitats like seagrass beds or mangroves. Dredging causes sedimentation that impacts photosynthesis also smothering corals. Pollutants entering the water change coral reef community structure.	Low
Marine transport	often results in oil spills and fuel leaks harm zooxanthellae, this inhibits juvenile recruitment and reduces reef resilience. Groundings and anchors directly destroy reefs. Toxicants associated with antifouling paint impacts reproductive success. Contaminated bilge water introduces toxicants and invasive species.	High

Threat	Description of how this threat impacts the species	Intensity of threat (low, medium, high, critical or unknown)
Tourism	can result in excess nutrients entering the water from golf courses, pleasure crafts and hotels which causes eutrophication. Hotel construction causes sedimentation and chemical run off. Developing in undeveloped areas increases causes of sedimentation, eutrophication and removes coastal plants. Divers and pleasure crafts can break coral.	High
Poor waste	impacts water quality, which causes algal growth	Unknown
management	and reduced photosynthesis	Onknown
Poor governance	perpetuates the lack of appreciation for ecosystem services. High poverty and the failure to monitor and manage resources leads to unsustainable behaviour that drives coral reef degradation and the loss of pillar coral.	High

1.6 Stakeholder analysis:

Country	Stakeholder	Stakeholder's interest in the species' conservation	Current activities	Impact (positive, negative or both)
The Bahamas, Grand Bahamas	Bahamas National Trust	Conservation, Education, MPA and Research	MPA	+
The Bahamas, Eleuthera	Cape Eleuthera Institute	Conservation and Research	Research	+
The	BREEF	Education, Conservation, Research	Education and Outreach	+
Banamas, Nassau	The Nature Conservancy	Research, Conservation	MPA	+
	Save the Bays	Activism, Conservation	Policy	+
The Bahamas, Andros	BAMSI	Research, Education	Research	+

Country	Stakeholder	Stakeholder's interest in the species' conservation	Current activities	Impact (positive, negative or both)
The Babamas	GEF Small Grants	Funding	Funding	+
Nassau	The Blue Foundation	Funding	Funding	+
The Bahamas, San Salvador	Living Jules Foundation	Education and Outreach	Education and Outreach	+
The Bahamas, Abaco	Friends of The Environment	Education, conservation, research	Education and Outreach	+
USA	Judith Lang	AGRAA and Coral Expert	Research	+
The Bahamas, Nassau	Department of Marine Resources	Fisheries Management	Management	+
USA	Craig Dahlgreen	AGRAA and Coral expert	Research	+
USA	Patricia Kramer/ TNC	AGRAA and Coral Expert	Research	+
The Bahamas, Nassau	Young Marine Explorers	Education, Citizen Science and Research	Research, Monitoring and Education	+

1.7 Context and background information that will affect the success of any conservation action for this species:

	Description	Barriers to conservation	Opportunities for conservation
Socio-cultural effects and cultural attitudes	Fishing provides an important source of protein and represents a cultural activity	Overfishing is a threat to coral reefs especially the action of fishing on spawning aggregations of and overexploiting of top predators	Fuel prices have gotten so high that it is no longer economically viable for many artisanal fishermen to go fishing, especially since they have to go further to catch fish
Economic implications	There are direct ties with the Bahamian economy and coral reefs through tourism and fisheries.	Conflict has and continues on the valuation of resources. Development decisions are made that directly threat coral reefs. Many of these decisions are made to accomplish short term development goals but have lasting long term negative effects on coral reefs.	No direct opportunities were identified
Existing conservation measures	There is an initiative to protect 20% of Bahamian marine and near shore waters by 2020	The lack of management and enforcement for marine protected areas and fisheries laws inhibits true protection. Many MPA's become "Paper parks"	This is a great opportunity to protect coral reefs if management is decisions are evidenced-based and implementation is effective

Administrative/political set-up	Political will has been extremely low to make environmental concerns a priority. With increase in crime and unemployment, extra effort has been put into large scale development projects that often result in destruction of vital ecosystems	Corruption and lack of transparency and freedom of information perpetuates development decisions that negatively impacts coral reefs	If corruption is tackled current protection measures will commence to be effective
Local expertise and interest Cultural attitudes	A recent 10-year Disney grant has brought together key stakeholders Despite the cultural connection with the ocean, there is a disconnect between Bahamians and the value and importance of protecting coral reefs. There is a notion of abundance and that resources will always be there	Lack of financial resources might weaken collaboration among stakeholders This notion is the foundation for an "open resource pool" usage pattern and might be a barrier for compliance	Coral conservation is now a greater priority within the Bahamian environmental world The connection with the sea might facilitate behavioural change if appropriate programmes are designed and implemented
Appeal of species	Coral reefs are unknown to many people. Not many people have had first-hand encounters with corals. However, the pillar coral is a good flagship species	Engaging general public in coral conservation is very hard, as these species are not relatable ones	Novelty, when appropriately framed and delivered could be of great appeal for campaigning

2. ACTION PROGRAMME

Vision (30-50 years)				
To reverse the decline of coral reefs in The Bahamas and restoring the balance to a health and viable ecosystem.				
Goal(s) (5-10 years)				
To monitor the status and trends of Bahamian Reef systems through the coral conservation citizen science project that will provide relevant information that can be used within the scope of a national plan to inform management and policy and identify new and/or existing threats that can be mitigated through community action.				
Objectives	Prioritisation (low, medium, high or critical)			
1. Revising the Coral Conservation Team Monitoring Protocol so that data gathered can be compared to the AGRAA method	High			
2. Implement the Young Marine Explorers Conservation Program Curriculum				
3. Design database with user interface to collect and analyse information gathered by coral conservation teams	Medium			
4. Training, evaluation and refreshment for Coral Conservation Team	Medium			

Activities	Country /	Priority	Associated	Time scale	Responsible stakeholders	Indicators	Risks	Activity type
	rogion	medium.	(currency)					
		hiah or	(•••••••))					
		critical)						
Objective 1: Revi	sing the Co	ral Conser	vation Team N	Aonitoring Pro	btocol so that data gathe	red can be compa	nred to the AGRAA me	ethod
Test and align	The	High	\$10,000	One Year	Young Marine	Quality of CCT		
Coral	Bahamas	-	USD	Beginning	Explorers in	surveys when		
Conservation				January	Collaboration with the	compared to		
Team Monitoring				2016	Bahamas National	AGRAA Surveys		
Protocol with that					Trust, Judith Lang,	and their ability		
of AGRAA and in					Craig Dahlgreen and	to inform status		
alignment with					the Department of	and trends		
national research					Marine Resources,			
needs					Rajan Amin of ZSL			
Objective 2: Impl	ement the Y	<u>oung Mari</u>	ne Explorers (Conservation	Program Curriculum			
Build capacity	The	High	\$50,000	Yearly	Young Marine	Number of		Education and
and trains the life	Bahamas		USD / year/	Beginning	Explorers	students		Training
long citizen			40	September		successfully		
scientist who will			participants	20215		completing the		
join the Coral			enrolled in			three year		
Conservation			a year long			curriculum and		
Team			training			matriculating		
			program			into the Coral		
						Conservation		
						Team		
1						1		

Objective 3: Design database with user interface to collect and analyse information gathered by coral conservation teams								
An internet	The	Medium	?	Begin	Young Marine			
database with a	Bahamas			January	Explorers in			
user-friendly				2017	collaboration with TBD			
interface is								
necessary to								
organize and								
analyse								
information								
gathered by coral								
conservation								
team members								
Objective 4: Training and skills evaluation and refreshment for Coral Conservation Team								
Develop and	The	Medium	?	TBD	Young Marine			
publish training	Bahamas				Explorers In			
and skills					collaboration with			
evaluation					Kathleen Sullivan			
material for					Sealey of University of			
replication and					Miami and Rajan Amin			
quality control of					of ZSL			
the coral								
conservation								
team								

3. LITERATURE CITED

Acosta A, Acevedo A. 2006. Population structure and colony condition of Dendrogyra cylindrus (Anthozoa: Scleractinia) in Providencia Island, Colombian Caribbean. Proc 10th Int Coral Reef Symp.;4:1605–10.

Aronson, R., Bruckner, A., Moore, J., Precht, B. & E. Weil 2008. Dendrogyra cylindrus. The IUCN Red List of Threatened Species. Version 2015.2. <www.iucnredlist.org>. Downloaded on04 August 2015.

Bak RPM, Engel MS. 1979. Distribution, abundance and survival of juvenile hermatypic corals (Scleractinia) and the importance of life history strategies in the parent coral community. Mar Biol.;54:341–52. 12.

Brainard, R.E., C. Birkeland, C.M. Eakin, P. McElhany, M.W. Miller, M. Patterson, and G.A. Piniak. 2011. Status review report of 82 candidate coral species petitioned under the U.S. Endangered Species Act. U.S. Dep. Commer., NOAA Tech. Memo., NOAA-TM-NMFS-PIFSC-27, 530 p. + 1 Appendix.

Hudson, J. H, and W. B Goodwin. 1997. Restoration and growth rate of hurricane pillar coral (Dendrogyra cylindrus) in the Key Largo national Marine Sanctuary, Florday. Proceedings of the 8th international Coral Reef symposium Panama 1:567-570

Irizarry-Soto E, Weil E. 2009. Spatial and temporal variability in juvenile coral densities, survivorship and recruitment in La Paraguera, southwestern Puerto Rico. Caribb J Sci.;45:269–81.

Miller SL, Chiappone M, Rutten LM. 2010 Abundance, distribution and condition of benthic coral reef organisms in the Upper Florida Keys National Marine Sanctuary – 2010 quick look report and data summary: CMS/UNCW Key Largo;

Muscatine L, Falkowski, P.G Dubinsky, z Cook, P. A McCloskey, L. R 1989. The effect of external nutrient resource on population dynamics of zooxanthellae in a reef coral. Proc. R. Soc. Lond. B 236: 311-324

National Oceanic and Atmospheric Administration. 79 FR 53851 - Endangered and threatened wildlife and plants: final listing determinations on proposal to list 66 reef-building coral species and to reclassify elkhorn and staghorn corals. Fed Reg. 2014;75:53852–4123.

Rogers CS, Fitz III HC, Gilnack M, Beets J, Hardin J.1984 Scleractinian coral recruitment patterns at Salt River Submarine Canyon, St. Croix, U.S. Virgin Islands. Coral Reefs. ;3:69–76.

Szmant, A. M. 1985. "Reproductive ecology of Caribbean reef corals." Coral Reefs: An Ecosystem in Transition 5: 43-54.

Vermeij MJA, Bakker J, van der Hal N, Bak RPM. 2011. Juvenile coral abundance has decreased by more than 50% in only three decades on a small Caribbean island. Diversity. 3:296–307.

Veron, J. 2000. "Corals of the World."

