

Green turtle*, Chelonia mydas*

Mantanani, Sabah

Author: Jonathan Phu

Suggested citation: Phu J. L., Pilcher N. J., and Cavada-Blanco F. (2021). A Survival Blueprint for the Conservation of the Green Sea Turtle *Chelonia mydas* in Sabah, Malaysia. EDGE of Existence programme, Zoological Society of London, UK.

1. STATUS REVIEW

Green sea turtles are one of the charismatic and iconic marine species globally. They are found in tropical waters and are listed as 'endangered' under the IUCN Red List. The primary threats to this species are bycatch, intentional killing of the turtles and egg harvesting, boat strikes, and loss of habitats. Protection of sea turtles from their human-induced threats differs between regions.

1.1 Taxonomy:

Kingdom: Animalia Phylum: Chordata Class: Reptilia Order: Testudines Family: Cheloniidae Genus: Chelonia Species: *Chelonia mydas* Common name: Green turtle

Local name: Penyu hijau / Penyu agar (Malay)

The green sea turtle, *Chelonia mydas* (Linnaeus 1758) is one of the six extant species of hard-shelled marine turtles within the *Cheloniidae* family. Its common name is derived from the green colour of the turtles' fat tissues (Hirth 1997). The green turtle's snout is very short, and, unlike the hawksbill turtle, its beak is unhooked. The carapace colour and pattern changes with age, from dark brown to olive at juvenile stage, while mature adults are either entirely brown, spotted or marbled with variegated rays (Wyneken 2001).

In the eastern Pacific Ocean, a subspecies, commonly referred to as the black turtles *Chelonia mydas agassizii* (Bocourt, 1868), has been proposed with a range extending from Baja California south to the Republic of Peru and west to the Revillagigedos Islands and Galápagos Archipelago (Márquez-Millán, 1990; Pritchard, 1997). However, genetic analyses do not support such taxonomic distinctiveness (Bowen et al., 1992; Karl et al., 1992) and the subspecies status is currently unaccepted (see WoRMS - World Register of Marine Species).

1.2 Distribution and population status:

Green turtles are distributed world-wide (circumglobally) in tropical and subtropical waters (Fig. 1; Seminoff et al. 2015; Groombridge & Luxmoore, 1989). In general, there are no true estimates of population size for the species due to the complex ecological niche of the animal migrating across ocean basins, encompassing a large geographical extent, and occupying several marine habitats throughout their life cycle (Limpus et al. 1992). Many of the published studies focusing on sea turtle have estimated population sizes for a single ontogenic stage, (e.g., adult nesting turtles by tagging nesting turtles and identify rates of reoccurrence and recruitment; nesting track counts during peak and non-peak nesting seasons; and nest counts Bjorndal et al. 1999; Bjorndal et al. 2005).

Genetically, green sea turtles show distinctive mitochondrial DNA (mtDNA) properties for each nesting region (Bowen et al., 1992). The geographical scale of genetic population structure varies among regions and genetic differentiation is usually detected between rookeries separated by more than 500km (Dethmers et al., 2006; Jensen et al., 2013). Studies have suggested that the global matriarchal phylogeny of green turtles has been shaped by ocean basin separations (Bowen et al., 1992; Encalada et al., 1996) and by natal homing behaviour (Meylan et al., 1990).

Figure 1: Global distribution (Seminoff 2004) and nesting sites (SWOT, 2021) of green turtle *Chelonia mydas*.

1.2.1 Global distribution:

Country	Population estimate	Distribution	Population trend	Notes
British Oversea Territory	23,724 annual turtle nests in 2010-2013 (Weber et al. 2014).	Ascension Island.	Increased nesting females from 1976 to 2013 (Mortimer & Carr 1987; Godley et al. 2001; Broderick et al. 2006; Weber et al. 2014).	Nesting populations
Australia	Coast of Queensland: High density seasons with more than 10,000 nesting females at once (1950s, 1965-1966, and 1974- 1975) (Limpus et al. 2003). Northwest Cape: More than 800 tagged nesting females in 1994 (Prince 2000). Raine Island: Nesting female of more than 1,000 individuals within a nesting season (Limpus et al. 2003).	Coast of Queensland; Northwest Cape; & Raine Island.	Coasts of Queensland: An upward trend from 1976 to 1996 followed by a downward trend from 1996 to 2004 (Limpus 2009). Northwest Cape: Insufficient data to estimate population trend (Prince 2000).	Nesting populations
Comoro Islands	Beaches of Itsamia: Annual nesting females of more than 3,000 individuals (Innocenzi et al. 2010). Grande Saziley beach of Mayotte: average of 1,545 (± 439) nesting females per year from 1998 to 200 (Bourjea et al. 2007).	Beaches of Itsamia, Moheli; & Grande Saziley beach of Mayotte.	Population trend is stable from 1998 to 2005. Lack of data to estimate long-term trend.	Nesting populations
Eparses Islands	Tromelin Island: Average nesting tracks of 7,178 (± 3,053) annually for 20 years since mid- 1980 (Laurent-Stepler et al. 2007).	Tromelin Island; Grande Glorieuse Island &	No data on long-term population trend.	Nesting populations

	Grande Glorieuse Island: 16% coverage of nesting beach with an average nesting tracks of 1,480 (± 666) annually for 20 years since mid-1980 (Laurent- Stepler et al. 2007). Europa Island: 26% coverage of nesting beach with an average nesting tracks of 1,361 (± 903)	Europa Island.		
	annually for 20 years since mid- 1980 (Laurent-Stepler et al. 2007).			
Brazil	Trindade Island: Annual average of 3,600 nests from 1991 to 2008, which is approximately equivalent to 600 female nesters (Almeida et al. 2011). Atol das Rocas and Fernando de Noronha islands: Turtle nesting monitoring program exist, but no published data to estimate population size (Moreira et al. 1995; Bellini et al. 1996; Bellini & Sanches 1996; Marcovaldi & Marcovaldi 1999).	Trindade Island; Atol das Rocas Island; & Fernando de Noronha Island.	Trindade Island: Population size for nesting turtles is stable between 1991 and 2008 (Almeida et al. 2011). Atol das Rocas and Fernando de Noronha islands: No published data to estimate population trend of nesting turtles (Moreira et al. 1995; Bellini et al. 1996; Bellini & Sanches 1996; Marcovaldi & Marcovaldi 1999).	Nesting populations
Saudi Arabia	Karan and Jana Islands: Less than 100 nesting turtles annually (Miller 1989; Al- Merghani et al. 2000; Phillott & Rees 2019). Ras Baridi and Farasan Islands: Annual nesting turtles of 150 individuals (Miller 1989; Pilcher 1999; Al-Merghani et al. 2000;	Karan Island; Jana Island; Ras Baridi; & Farasan Island.	Insufficient data to estimate population trend	Nesting populations

Oman	Pilcher & Al-Mansi 2000; Pilcher & Al-Merghani 2000). Masirah Island and Ras al-Hadd: More than 10,000 nesting turtles (Ross & Barwani 1982;	Masirah Island; & Ras al-Hadd.	Insufficient data to estimate population trend	Nesting population
Djibouti	Reece et al. 2016). Iles Moucha & Maskali, Ras Siyyan, and Iles des Sept Fréres: Estimated nesting population of approximately 100 individuals (PERSGA 2003; PERSGA/GEF 2004).	lles Moucha & Maskali; Ras Siyyan; & lles des Sept Fréres.	Insufficient data to estimate population trend	Nesting population
Egypt	Wadi Al-Gimal, Ras Banas, Sarenka, Siyal, Zabrgad and Rowabil Islands: Estimated nesting population of approximately 200 individuals (Frazier & Salas 1984; PERSGA 2003; PERSGA/GEF 2004). Zabargad Island: Important nesting sites for green turtles, with 438 nests in 2001 and 1,527 nests in 2008 (Hanafy 2012). Ras Begdadi: 29 nests in 2001 and 2 nests in 2006. No nest was found in 2007 and 2008 (Hanafy 2012). Umm Abas: 33 nests in 2001 and 1 nest in 2007. No nest was found in 2008 (Hanafy 2012).	Wadi Al- Gimal Island; Ras Banas Island; Sarenka Island; Siyal, Zabrgad Island; Rowabil Island; Zabargad Island; Ras Begdadi; & Umm Abas.	Wadi Al-Gimal, Ras Banas, Sarenka, Siyal, Zabrgad and Rowabil Islands: Insufficient data to estimate long-term trend of nesting population size. Zabargad Island: Increasing nesting females from 200 individuals in 2001 to 611 individuals in 2008 (Hanafy 2012). Ras Begdadi: Decreasing nesting trend from 29 nests in 2001 to 0 nest in 2008 (Hanafy 2012). Umm Abas: Decreasing nesting trend from 33 nests in 2001 to 0 nest in 2008 (Hanafy 2012).	Nesting population Hanafy (2012) reported nesting turtles in Tiran Island, but no quantified data available.

Costa Rica	Tortuguero: Average annual nesting turtles of between 17,402 and 37,290 in 1999-2003 (Troéng & Rankin 2005). San José Island: A total of 1,232 nesting females identified over 4 nesting seasons from 2012 to 2016 (Fonseca et al. 2018).	Tortuguero; & San José Island	Tortuguero: 417% increase in nesting trend from 1971 to 2003 (Bjorndal et al. 1999; Troéng & Rankin 2005). San José Island: Insufficient data to estimate population trend (Fonseca et al. 2018).	Nesting population
Ecuador	Isabela (Quinta Playa & Barahona beaches), Santa Cruz (Las Bachas beach), and Baltras Islands (Las Salinas beach): Approximately 1,400 nesting females annually in 1979-1982 (Hurtado 1984), 1,657 nesting females annually in 2001-2005 (Zárate et al. 2006). Quinta Playa: Between 1,381 and 3,418 nesting females annually in 2009-2011. Between 160 and 570 nesting females annually in 2016-2018 (IAC 2019).	Galapagos Archipelago (Zárate et al. 2006)	Quinta Playa: Decreasing nesting trend in 2016-2018 (IAC 2019). Las Bachas: Decreasing nesting trend in 2013-2017 (IAC 2019).	Nesting population
Guinea- Bissau	Beaches of the Orango National Park: 200-300 nests annually (Barbosa et al. 1998). Poilão Island: 314 and 1,651 nesting females tagged from July to September in 1994 and July to October in 1995 respectively (nesting seasons) (Fortes et al. 1998).	Beaches of the Orango National Park Poilão Island	Insufficient data to estimate population trend	Nesting population

]
Indonesia	Sangalaki Island: Total monthly	Sangalaki	Sangalaki Island: Estimated	Nesting
	emergences and protected	Island; &	average daily emergences	population
	nests fluctuated between 160 -	Derawan	in the 1950s and 1970s	Salm et al. (1982),
	1,166 (mean = 584 ± 234.5) and	Island.	were 200 and 150 turtles	Gikes & Adipati
	93 - 812 (mean = 354 ± 153)		respectively (Lindsay &	(1987), and WWF
	respectively (Adnyana et al.		Watson 1995). The average	Indonesia (1997)
	2008).		monthly nest was 616 in	reported nesting
	Derawan Island: Total monthly		1995-2000 (Adnyana 2003).	turtles in Yapen
	emergences and protected		The monthly average	Island; Dethmers
	nests fluctuated between 4-65		number of nests during the	et al. (2006)
	(mean = 21 ± 13) and 4-33		period of 2002-2006 was	reported nesting
	(mean = 13 ± 6) respectively		354 nests (Adnyana et al.	turtles in Aru
	(Adnyana et al. 2008).		2008). In general, turtle	Islands; Tapilatu
			nesting trend is decreasing.	et al. (2017)
			Derawan Island: Monthly	reported nesting
			average nests were 51 in	turtles in
			1985-1990 (Adnyana 2003),	Wondama,
			compared to the current	Manokwari, and
			value of 13 monthly	Kaimana, but no
			average nests (Adnyana et	quantified data
			al. 2008).	available.
Philippines	Tan-awan: 82 individual turtles	Tan-awan;	TIHPA: Nesting turtle	Tan-awan: In-
	encountered from May 2012 to	Turtle	population has increased	water sea turtle
	October 2018, with 28% (n = 23)	Islands,		study.
	encountered once throughout	Tawi-Tawi; &		Turtle Islands:
	study period (Arajo et al. 2019).	Baguan		Nesting
	Turtle Islands, Tawi-Tawi: Most	island (part		population
	of the tagged 10,172 nesting	of the Turtle		
	turtles from 1982 to 2002	Islands		
	(Sagun 2002 & 2004).	Protected		
	-	Heritage		
	Baguan Island: From July 1984	Area -		
	to December 1989, a total of	TIHPA).		
	27,458 nests were recorded			
	(Trono 1991). In 1995 and 2011,			
	~2,466 and ~2,844 individual			

	nesting females were recorded (Burton 2012).			
Seychelles	Aldabra Atoll: Annual nest of 2,000-3,000 in late 1960s to an annual nest of 15,669 in 2004- 2008 (~3,100-5,225 nesting females) (Mortimer et al. 2011).	Aldabra Atoll	Aldabra Atoll: Increasing nesting population trend from late 1960s to 2008 (Mortimer et al. 2011).	Nesting population
Suriname	An estimated number of 1,500 to 2,000 turtles nested across all beaches in 1968-1974 annually (Schulz 1975). Krofajapasi: A total of 204 nests in 1982 (Mrosovsky et al. 1984). Matapica: Number of nests are more than 500 in 1993 (Godfrey et al. 1996). Galibi: Estimation of 4,150 nesting turtles in 1995 (Weijerman et al. 1998).	Krofajapasi; Matapica; & Galibi	Increasing nesting trend from 1968 to 1995 (Schulz 1975; Mrosovsky et al. 1984; Godfrey et al. 1996; Weijerman et al. 1998).	Nesting population
Mexico	Michoacán (Colola beach): Average of 229 annual nesting females from 1983 to 1986; average of 7,618 annual nesting females from 2014 to 2017 (IAC 2019). Yucatan Peninsula (El Cuyo): 390 nests in 2002; 157 nests in 2003; 172 nests in 2004 (Xavier et al. 2006). Veracruz: 617 nests in 2005, 501 nests in 2006, 536 nests in 2007 ().	Michoacán (Colola beach); Yucatán; & Veracruz.	Colola beach: Increasing nesting trend from 2014 to 2017 (IAC 2019). Campeche: Decreasing nesting trend from 2000 to 2003 (Hernandez-Guzmán 2003).	Nesting population

]
United	Florida (central east coast in	Florida; &	Florida: Increasing nesting	Nesting
States of	Brevard County): Annual nesting	Hawaii.	trend (Witherington &	population
America	turtles of ~608 individuals in		Koeppel 2000; Antworth et	
	1989-1999 (Witherington &		al. 2006).	
	Koeppel 2000).			
	Florida (central east coast at the		Hawaii: Increasing nesting	
	Canaveral National Seashore):		trend (Balazs & Chaloupka	
	An annual average of 185 (± 55)		2004).	
	nests 1985 to 2003 (range: 5–		2004).	
	857) (Antworth et al. 2006).			
	Hawaii (French Frigate Shoals):			
	More than 1,100 female nesters			
	tagged from 1988 to 1992			
	(Balazs & Chaloupka 2004).			
Bahamas	Union Creek Reserve and	Union Creek;	Union Creek Reserve: Turtle	In-water turtle
	Conception Island: Annual	&	abundance increase at an	population
	estimates of abundance	Conception	annual rate of 38.8% (1979-	
	(Horvitz-Thompson method)	Creek	1985), followed by a period	
	ranged from 41 to 257		of significant decrease	
	individual in-water turtles from		(1985-1994) at an annual	
	1978 to 2001, with an average		rate of 213.1%. Turtle	
	immigration rate of 42.4%		abundance did not change	
	(range = 23.2 - 89.8%) (Bjorndal		significantly in 1994-2001.	
	et al. 2005).		The upward shift in 2001,	
			which was followed by a	
			higher year in 2002 (data	
			not included) suggests that	
			the abundance of the	
			turtles has increased	
			(Bjorndal et al. 2005).	
			Conception Island: A	
			constant trend in	
			abundance from 1990 to	
			2001 (Bjorndal et al. 2005).	

A variety of published research articles (referenced from Seminoff et al. 2015) revealed other lesser nesting areas of green turtles around the world:

Cook Islands: Scilly Atoll (Lebeau 1985); Palmerston Atoll (White 2012); Venezuela (Prieto et al. 2012; Vera & Buitrago 2012) Guyana (Pritchard 1969); Australia: Gulf of Carpentaria (Limpus 2009); Yemen (PERGSA/GEF 2004); Sri Lanka (Dattatri & Samarajiva 1983; Kapurusinghe 2006; Ekanayake et al. 2011); Dominican Republic (Ottenwalder 1981); d'Entrecasteaux Islands (Pritchard 1994); Brazil: Atoll da Rocas (Bellini et al. 2012); Somalia (Goodwin 1971); French Guiana (Fretey 1984); Papua New Guinea (Kinch 2003; Wangunu et al. 2004); Iran (Mobaraki 2004); Pakistan (Kabraji & Firdous 1984); Japan (Kamezaki et al. 2004); Thailand (Groombridge & Luxmoore 1989); Mayotte Archipelago (Bourjea et al. 2007); Micronesia (Wetherall et al. 1993); Natuna Islands (Limpus 2009); New Caledonia (Limpus 1985, 2009); Bangladesh (Khan 1982); China (Groombridge & Luxmoore 1989); Primieras Islands (Hughes 1974); Angola (Carr & Carr, 1991); Equatorial Guniea (Bioko Island: Tomás et al. 1999); Ghana (Fretey 2001); Cuba (Blanco et al. 2009); Cyprus (Kasparek et al. 2001); India (Kar & Bhaskar 1982); Kenya (Wamukoya et al. 1996); Madagascar (Rakotonirina & Cooke 1994); Maldives (Frazier, 1990); Marshall Islands: Bikar Atoll (McCoy 2004); Mauritius (Groombridge & Luxmoore 1989); Palau (Bureau of Marine Resources 2008; Maison et al. 2010); Sierra Leone (Fretey & Malaussena 1991); Taiwan (Chen & Cheng 1995); Turkey (Kasparek et al. 2001); Myanmar (Lwin 2009); Sao Tome é Principe (Brongersma 1982); Vietnam (Hien 2002); Solomon Islands (Leary & Laumani 1989); Tanzania (Howell & Mbindo 1996); Mexico: Revillagigedos Islands (Holroyd & Telfry 2010). Sporadic nesting occurs in at least 30 additional countries (Groombridge & Luxmoore 1989).

1.2.2 Local distribution: Malaysia

Region / province	Site	Level of Protection	Population size	Reference(s)	Notes
Peninsular: Penang	Coasts of Penang Island	Low: Although nesting habitat is not actively protected, turtle nesting activities are low.	A total of 165 nests from 2001 to 2009.	Salleh et al. (2012).	
Labuan Island		Medium: Low turtle nesting activities within established Marine Park Centre	A total of 29 nests from 2011 to 2017.	Ghazali & Jamil (2019).	Pulau Rusukan Besar Marine Park Centre.
Peninsular: Terengganu		High: Highest nesting population in Peninsular Malaysia within established turtle sanctuaries.	4,000-5,000 nests in 1984 and 1986; >5,000 nests in 1991. 2,000-3,000 nests annually from 1996 to 2000. Average of 85 (range: 44-140) nesting turtles annually from 1993 to 2008. 1,000-3,000 nests annually in the past five years of 2017.	Chan (2006); Chan (2013); Jolis et al. (2015); Joseph et al. (2017).	Turtle sanctuaries: Rantau Abang, Ma' Daerah, Redang Island, and Perhentian Island.
Borneo: Sarawak	Pulau Talang- Talang Besar Pulau Talang- Talang Kecil Pulau Satang Besar Pulau Satang Kecil	High: Nesting habitats are part of the gazetted national park,	Between 2,000 and 3,000 nests annually from 1970 to 2000.	Chan (2006).	Talang Satang National Park.

Borneo: Sabah	Pulau Selingaan Pulau Gulisaan Pulau Bakkungan Kecil	High: Highest nesting population in the nation, which is within the gazetted Turtle Islands Park.	From 1991 to 2000, nesting abundance was more than 8,000 annually. Annual nesting abundance is between 10,000 and 15,000 for the past five years of 2017.	Chan (2006); Sabah Parks: unpublished data – cited in Joseph et al. (2017).	Turtle Islands Park.
------------------	---	--	---	--	-------------------------

1.3 Protection status:

Conservation of green turtles, along with other marine turtle species, aims to promote the survival of populations by recovering depleted stocks, protecting habitats considering the dynamics of interactions with human communities (Eckert, 1999). Protection of green turtles from their anthropogenic threats is approached in a variety of ways in different regions. Globally, green turtles are protected under Appendix I of the Convention on International Trade in Endangered Species of Flora and Fauna (CITES) from international trading. Green turtles in the Indo-Pacific region are also protected under the Convention on the Conservation of Migratory Species of Wild Animals (CMS).

Green turtles are found in most tropical regions and these animals are protected under respective national legislations and laws. In the Western and Central Pacific Ocean (or Oceania), green turtles are under the jurisdiction of the National Marine Fisheries Service (NMFS). In the United States Federal Government, green turtles are protected under the Endangered Species Act (ESA) which prohibits unauthorised 'take' of green turtles defined as to "harass, harm, pursue, hunt, shoot, wound, kill, trap, capture, or collect, or to attempt to engage in any such conduct". The Environment Protection and Biodiversity Conservation

Act 1999 under the Australian government is enforced to conserve sea turtle populations in Australia. In the Philippines, Task Force Pawikan in 1979 was mandated to protect and conserve sea turtles, which is now under the Pawikan Conservation Project of the Department of Environment and Natural Resources (Trono, 1991; Cruz, 2004; Bagarinao, 2011).

In Malaysia, sea turtles' protection and conservation are regulated by their respective states (Fisheries Act, 1985). Sea turtles are not listed as a protected animal in the state of Perlis and Selangor of Peninsular Malaysia as there were no records of sea turtle nesting in these states (Ahmad et al., 2004). In Sabah, there are several legislations that list sea turtles as protected animals. The Wildlife Conservation Enactment 1997 listed green and hawksbill turtles as fully protected animals; the Fauna Conservation Ordinance 1963 of Act No. 11, and the Custom Act 1967, prohibited trading of sea turtles in Sabah; and the Fauna Conservation (Turtle Farms) Regulations, 1964 regulates the collection of green and hawksbill turtle eggs for hatchery purposes. Sea turtles are also protected within gazetted Parks and Natural Reserves under the Parks Enactment 1984, Part VIII, No. 48 (1) d.

1.4 Ecology, behaviour and habitat requirements:

Green turtles are herbivorous during most of their life (Arthur and Balazs 2008; Santos et al. 2011). They occupy different marine habitats at specific life stages. The nesting and foraging grounds of sea turtles are different, therefore the sea turtles sighted underwater at a given location may be of different populations: foraging turtles that reside around the area most of the time over a long period, and nesting turtles that visit the area during nesting season (Senko et al. 2010; Teh et al. 2018). The life history of green turtles is characterized by oceanic dispersal of post hatchling turtles that are transported by ocean currents for several years (Bolten 2003). During this stage, they are omnivorous and feed on any pelagic debris that comes across.

When they grow and increase their body size, they become less vulnerable to predators and eventually (after ~5-10 years) recruit into neritic feeding habitats (Musick and Limpus 1997, Bolten 2003) and feed on either seagrass or algae (Hirth 1971). Juvenile turtles often move through a succession of developmental habitats over a period of 20 years or more before settling into one area upon reaching sexual maturity (Musick and Limpus 1997, Jensen et al. 2013). Once turtles have settled into feeding grounds, they generally show strong fidelity to specific areas (López-Castro et al. 2010). They are recruited to neritic developmental habitats with an abundance of seagrass and/or marine algae, where they feed and grow until they reach sexual maturity (Musick and Limpus 1997). After reaching sexual maturity both females and males tend to migrate back to their natal rookery to mate and breed (Fitz-Simmons et al. 1997, López-Castro et al. 2010). In Sabah for instance, Mabul (Palaniappan and Haziq, 2017) and Mantanani (Pilcher 2010) Islands are some of the most documented foraging grounds for green turtles, with preferences towards shallow coral reef habitats and seagrass meadows.

The ecological behaviour of these turtles results in demographic isolation and significant genetic structuring among rookeries or nesting populations (Jensen et al. 2013). Nuclear gene flow may occur if turtles from different nesting stocks interbreed on foraging grounds or along migration corridors (Bowen et al. 2005), but the extent to which this male-mediated gene flow occurs remains unclear (Dutton et al. 2013, Roden et al. 2013). Population isolation means that they are not likely to be recolonized in the case of local population decline or local extinction, highlighting the importance of identifying rookeries in most need of protection (Bowen et al. 2005).

1.5 Threat analysis:

Threat	Description of how this threat impacts the species	Intensity of threat (low, medium, high, critical, or unknown)	IUCN Red List threats classification
Chemical and debris ingestion	Inhalations and indiscriminate feeding cause green turtles to consume contaminated water (oil spills and heavy metals) and debris, resulting in reduced food assimilation, gastro-intestinal tract obstruction, and potential damage to the tissues of their digestive tract (Camacho et al. 2013; Yaghmour 2019).	Medium	9.4: Garbage & solid waste
Debris entanglement	Green turtles are reported to get entangled in discarded fishing gears made of non-biodegradable synthetic materials (Wilcox et al. 2013; Duncan et al. 2017). Plastic debris in the water also causes entanglement of green turtles and may eventually lead to death (Vegter et al. 2014).	Critical	9.4: Garbage & solid waste
Intentional harvest of turtles	Green turtles are harvested intentionally for their meat and eggs for consumption (Bjorndal & Jackson 2002; Allen 2007).	Critical	5.4: Fishing & harvesting aquatic resources
Climate change/ global warming	Like any other marine turtles, green turtles exhibit temperature-dependent sexual determination (TSD; Mitchell et al. 2009; Telemeco et al. 2009). Successful incubation of eggs occurs between 25 and 33°C (Miller 1985). A major proportion of female hatchlings are observed at the upper thermal range during incubation phase and vice versa (Spotila & Standora 1985). Increased temperature due to climate change could lower hatchling success rate (Hawkes et al 2007), causing imbalances in population's sex ratios (Hawkes et al. 2007, 2009).	Medium	11.5: Climate change & severe weather: Other impacts
Vessel collisions	Vessel collision is a common threat for many marine megafauna, especially those that breath air. Green turtles forage at shallow waters and often these areas are hotspots for commercial and recreational vessels (Marsh et al. 2012; Schofield et al. 2015)	Critical	6.1: Recreational activities

Habitat	Nesting turtles travel to natal sandy beach areas to lay eggs	Medium	1: Residential &
destruction	(Hirth 1980). These areas may be altered or lost due to human		commercial
	activities (Lutcavage et al. 1997) and rising sea temperature as		development; 6.1
	a result of climate change (Baker et al. 2006; Fish et al. 2008).		Recreational
	Green turtle foraging grounds are located primarily in shallow		activities; and
	waters with presence of seagrass. These areas are being		11.1 Habitat
	severely altered by anthropogenic activities (Christianen et al.		shifting &
	2014; Unsworth et al. 2018).		alteration.
1			

1.6 Stakeholder analysis:

Stakeholder	Stakeholder's interest in the species' conservation	Current activities	Impact (positive, negative or both)	Intensity of impact (low, medium, high or critical)
The Board of Trustees of the Sabah Parks.	It is established for the conservation of heritage sites of Sabah state of Malaysia.	Active monitoring and management on Sabah's Turtle Islands Heritage Protected Area (TIHPA), one of the largest nesting grounds of green turtles. In progress of gazetting Mantanani waters as part of the proposed marine protected area.	Positive: The gazettement will further enhance conservation efforts towards the protection of green turtles in the surrounding waters.	Critical
Mantanani Police authority	Green turtles are registered as a protected animal species by the state and is enforced through the police department.	Law and legislation enforcement on the protection and conservation of green sea turtle species.	Positive: Any party members that directly harm or threaten the survival of the species will be charged under the law. Violations of the law also include fish bombing, which was reported to be practiced by a small portion of the community.	Medium.
Local non- government organisation (Reef Check Malaysia – Mantanani)	Marine conservation and protection of threatened species (as listed in the IUCN red list of threatened species), aligned with the welfare of local communities involved, is their long-term goal.	Reef Check Malaysia team stationed in Mantanani has been focusing on promoting sustainable lifestyle and improving the quality of life of the local community. Some ongoing projects include solid waste management and	Positive: Improving community livelihoods helps to shift destructive fishing practice (fish bombing) to sustainable methods. Upskilling the community members allows them to acquire financial resources through other means (crafts, tourism & hospitality, and	High

		community upskilling	consumable products) as	
		programmes.	alternatives.	
Tourism	Green turtles are	Regular tourism	Positive. Low numbers of	Critical
sector (Resort	charismatic key marine	activities include	motorised boat operations	
and tour	species. The reefs of	motorised boat	are expected to reduce	
agencies)	Mantanani attract a vast	operations for logistics	potential boat strikes to	
	variety of tourists from	(in and out between the	green turtles. A reduction in	
	around the world.	island and mainland,	disturbance and harassment	
	Having an abundance of	around the island),	to foraging turtles is possible	
	foraging green turtles	recreational water	when SCUBA diving activities	
	will add further value in	activities (SCUBA diving,	(one of the common water-	
	terms of tour attraction	snorkelling, banana	based tour activities in	
	to this hotspot.	boating, etc.).	Mantanani) are reduced.	
		Note: Due to the	Negative. Unregulated boat	
		pandemic, most	traffic and operations could	
		agencies are in retreat	potentially collide with and	
		from business	harm sea turtles.	
		operation, which means	Reduced tourism impact	
		there are very limited	community financial income	
		tour activities in	and can create economical	
		Mantanani. This leads to	shift towards a more marine	
		the reduced motorised	resources-dependent	
		boat operations around	livelihood practice.	
		the waters of	p	
		Mantanani.		

1.7 Context and background information that will affect the success of any conservation action for this species:

	Description	Barriers to conservation	Opportunities for conservation
Socio-cultural	Local communities currently rely on small scale	The inability for stakeholders to be aware of the	The long-term dependence on local fishery
effects and	fishing to sustain their livelihood with a	long-term negative impacts towards the marine	resources allows the opportunity to
cultural	complimentary financial income from tourism	environment by the lack of management on	develop alternative livelihoods that are
attitudes	activities. Fishermen practiced fish bombing in the	fishing and tour activities. These impacts will cause	sustainable. A positive change must be
	past. However, this fishing method has reduced due	habitat degradation, which will in turn affect their	adopted by local fishers in order to ensure
	to enforcement by the state authority, though not	livelihood.	marine resources are sustainable.
	completely absent.	The lack of awareness and knowledge in the	
	Unpublished reports mentioned rare occurrence of	community about the impact of using bombing	
	green turtle nesting, but the eggs were collected by	methods to harvest seafood, added to the ease of	
	the community as a food source.	harvesting fish compared to the traditional hook	
		and line method, is causing the persistence of such	
		destructive practice.	

Economic	Green turtles can economically affect the tourism	Increased tourism and fishing activities without	Expansion of the local tourism industry
implications	sector and the livelihood of the community	proper regulations and managements could	and the need for the community to
	indirectly. Green turtles are charismatic animals and	threaten the local green turtle local population and	harvest marine resources for their
	are always an attraction for tourists and visitors.	the marine ecosystem in general. Currently,	livelihood gives opportunity to develop
	They are a key marine species because they play	engagement of the local community in	nature-based tourism. This form of
	crucial ecological role in coral reef and seagrass	conservation or environmentally friendly activities	economy allows communities to sustain
	habitats mainly as nutrient transporters.	is low, due to a lack of awareness and education	their livelihood while ensuring their
	The community has founded the Mantanani	programs	marine resources are well-protected.
	Homestay, a program by which they offer		'Sea turtle rangers' initiative can be spear-
	accommodation and hospitality services to tourists		headed train local fishermen to observe
	and visitors on the island. Some are even trained		and protect nesting adult green sea turtles
	and offers PADI SCUBA diving courses, who were		to keep their eggs protected and increase
	previously working as fishers.		hatchling success rate.
Existing	Green turtles are listed as fully protected animals.	Most people from the local community have a	upskilling programmes to increase
conservation	Fines and imprisonment will be imposed to	negative perception about the marine protected	alternative income for the community
measures	individuals caught guilty of harassing, harvesting,	area proposal. There is an unwillingness to adopt	could serve as good incentive to reduce
		sustainable fishing practices and respect proposed	illegal fishing practices. This will reduce

	and killing the animal, part of the animal, and/or product of the animal. There is a proposed gazettement of Mantanani waters as part of a marine protected area by the state government sector.	zoning to protect important sea turtle foraging areas. Lack of studies on and understanding of how the welfare of the community will be maintained if the gazettement is enforced.	their dependency on harvesting marine resources, which make possible the implementation of the marine protected area.
Administrative/ political set-up	Mantanani Island is under the jurisdiction of the district of Kota Belud. A village chief, usually a man, is enacted every several years (though not consistent) for decision making on local welfare, including land management and cultural affairs. Waste management, electricity supplies, and tourism are regulated and taxed by the district administrations. The gazettement and enforcement of the proposed marine protection area by the Sabah Parks is under the state's authority.	Due to logistical difficulty of accessing the island, essential supplies and services (waste management and electricity) are provided to the community at a higher cost. A lack of involvement and investments by NGOs and various government sectors, primarily due to the accessibility to the islands. This is among the factors that slows down progress for the proposed action plan. Government representatives are less welcomed by the Mantanani community due to the fear of the enforcement of the 'no-take' zones at their fishing grounds.	Community members are keen to participate and contribute toward efforts to improve their livelihood. Sustainable development and local fishery practices should aim at improving livelihood for the community.

Local expertise	Sabah Parks, in collaboration with the Borneo	Limited funding and financial resources by the	Through decades of working alongside
and interest	Marine Research Institute of Universiti Malaysia	stakeholders cause difficulty in establishing	with the community of Mantanani by local
	Sabah will provide essential expertise to evaluate	collaborative programmes. Although the proposed	NGOs, the community is slowly becoming
	conservation action plans suited for enforcement in	gazettement of Mantanani as an MPA still stands,	aware of the importance of sustainable
	the case of Mantanani waters.	there is a lack of extensive research to gather	practices and of preserving their marine
		baseline data for decision making.	assets. This allows them to be more
			receptive to conservation interventions, as
			long as their income and livelihood is not
			compromised.
Resources	Conservation resources are majorly provided by	Conservation and research projects are initiated	Results from a survey in the community
	local and international NGOs. Government	through grant applications. There is a need for	showed that many members are willing to
	investments are channelled towards completion of	plans to acquire long-term funds for the	engage with conservation activities as a
	the proposed marine protected area.	continuation of conservation works. Sea turtles are	livelihood alternative, to reduce, but not
		long-lived animals and conservation results can	quit fishing. This will create opportunity for
		only be seen after years of consistent efforts.	capacity building as a step forward to
			expand conservation effort.

2. ACTION PROGRAMME

Vision (30-50 years)							
A sustainable population of green turtles in the waters of Mantanani through community-driven conservation efforts.							
Goal(s) (5-10 years)							
Identify and minimise the threats to green turtles that are recruited to the foraging grounds of Mantanani.							
Objectives Prioritisation							
	(low, medium, high, or critical)						
Identify and quantify main threats to foraging green turtles in the waters of Mantanani by the end of 2023.	Medium						
Extend ongoing aerial monitoring program to understand changes over time of the distribution and abundance	High						
of green turtles in the shallow waters of Mantanani.							
Estimate the home range of green sea turtles in the coral reefs of Mantanani by 2025.	High						
Upskilling at least 20 local fishing community members to transition into ecotourism jobs by 2025.	High						
Facilitate a participatory drafting process of the management plan for the proposed MPA to be created in	Critical						
Mantanani, ensuring local communities are included appropriately in the process.							

Activities	Country / region	Priority (low, medium, high, or critical)	Associated costs (currency)	Time scale	Responsible stakeholders	Indicators	Risks	Activity type
<i>Objective 1:</i> Identify Interview surveys on bycatch of green turtles through artisanal fishery.	y and quantify Mantanani, Sabah	main threat	s to foraging green to ~ £ 800 per survey for hire marine biologist to conduct interview. ~ £ 500 per survey to cover field expenses.	Annually for 5 years	vaters of Mantanani	keports on annual green turtle bycatch through local fishing activities.	Lack of cooperation by the fishermen. Fishermen provide inappropriate information, resulting in false interpretation of bycatch numbers.	Research and scientific data collection.
Initiate monitoring program to document	Mantanani, Sabah	High	~ £ 5,000 per year to hire a wildlife ranger.	10 to 20 years minimum	NGOs & community members.	Reports on annual green turtle stranding numbers and causes.	Stranding cases not reported and documented. Lack of interest by the monitoring team.	Conservation action program.

stranded green turtles. <i>Objective 2:</i> Extend Mantanani. Workshop training for other NGOs	ongoing aeria Mantanani, Sabah (and	I monitoring	~ £ 200 for training expenses. program to understa ~ £ 1,000 expenses per workshop.	and changes o	over time of the dist	Secure interests from the community	nce of green turtles in the shallo	w waters of
and the community on unmanned aerial vehicles for green turtle aerial monitoring applications.	probably other potential green turtle foraging shallow waters)	High	~ £ 200 per field survey, including logistics, accommodation, and other expenses.	Monthly data collection for at least 3 years period	NGOs, community, and government authority.	members and local NGO to support the program. Community / NGO- led aerial monitoring program for long- term data collection.	Lack of interest and commitment by the stakeholders.	Capacity building.
Acquire aerial monitoring	Mantanani, Sabah	High	~ £ 2,000 to purchase	1 to 2 years period	NGOs, community, and	Acquire all necessary	Insufficient funding resources to purchase equipment.	Equipment purchase.

equipment and			equipment (a full		government &	equipment and	Lack of maintenance on aerial	
tools.			set drone		non-government	desktop application	equipment could cause	
			equipment).		associations with	to initiate aerial	malfunctioning.	
			~ £ 4,000 to		grants and	mapping		
			subscribe to		funding	procedures.		
			computer		opportunities.			
			applications for					
			data analyses and					
			aerial					
			photogrammetry,					
			and cloud					
			computing.					
			~ £ 2,400 annual overhead cost for		NGOs, community,	Data visualisation and mapping long-	Inconsistency of aerial	
Initiation of long- term aerial	Mantanani,		aerial mapping.	5 years	scientific peer	term distributions	planning for the long-term aerial monitoring program.	Reporting and
monitoring	Sabah	High	~ £ 2,000 on	period or	reviewers and	of foraging green	Zoning plan causes conflict of	conservation action
program.			reporting and	more.	conservation	turtles.	Zoning plan causes conflict of interests among the various	implementation.
			publication		advisory services	Annual reports and	stakeholders.	
			expanses.		from leading	5-year report on	Stateriolder 5.	

Organise turtle capture and tagging field trips	Mantanani, Sabah	High	~ £ 3,000 for program expenses.	5 to 10 years		Acoustic transmitters appropriately attached to the captured turtles	Personnel safety being compromised while on the field to capture green turtles.	Conservation action program.
Obtain acoustic receivers and transmitters.	Mantanani, Sabah	Medium	~ £ 5,000 to purchase 15 telemetry equipment and necessary tools.	Within first 2 years	Local SCUBA diving agencies.	Received acoustic receivers and transmitters.	Inappropriate acoustic receivers and transmitters being purchased for the project.	Purchase of tools, equipment, and facility.
<i>Objective 3:</i> Determ	nine the site fi	delity of at le	ast 10 green turtles f	oraging in the	international sea turtle conservation organisations. e coral reefs of Man	sea turtle distribution incorporating possible marine conservation zoning plan at targeting areas.	gh acoustic telemetry applicatic	n.

Deploy receivers at selected established SCUBA dive sites.	Mantanani, Sabah	High	 £ 500 to deploy 15 receivers through SCUBA diving method, at selected coral reef dive sites. £ 2,000 for data collection and devices maintenance. £ 1,000 for data analyses and publication fees. 	5 to 10 years		Acoustic receivers deployed at 15 selected sites and acquire data on green turtle site fidelity.	Receivers not appropriately placed, causing damage or loss of the equipment.	Research and scientific data collection.
Objective 4: Upskill	ing at least 20	local fishing	community members	s to transitior	n into ecotourism jo	bs by 2025.		
Plan and organise training workshops and awareness program on	Mantanani, Sabah	High	~ £ 1,000 expense per workshop session.	2 years	NGOs and local community, corporate trainers	Planned workshops and community members attended the workshops.	Lack of interest and participations by the community members, especially local fishermen.	Capacity building, sustainable development.

sustainable fishery practices, eco- friendly tourism and promoting alternative income sources for the local community.			 £ 1,000 to hire trainer per workshop session. £ 3,000 to fund and start up community-led economy development. 			Establish community-led corporate start- ups.		
Plan and organise training sessions (identification of threatened marine species; eco- friendly practices for SCUBA diving; and boat speed limits) for local tour guide and	Mantanani, Sabah	High	 £ 1,000 expense per workshop session. £ 1,000 to hire trainer per workshop session. 	2 years	NGOs and local tour operators	Planned training sessions and tour operators invited for the programs.	Lack of interest and participations by the tour operators.	Capacity building

SCUBA diving instructors. Setup of ~ £ 1,000 media promotion media production and and tour facilities production and in collaboration Mantanani, with local tour Mantanani, operators and Mantanani, community Sabah High allocation for facility building. ~ £ 2,000 yearly for facility maintenance.	2 to 5 years.	NGOs, tour operators and community members	Promotion webpages being setup (with highlights on on- going conservation projects) to promote and receive tour bookings from clients. Appropriate and eco-friendly facilities setup for tour activities operation.	Lack of interests by established tour operators to incorporate eco-tourism as their marketing strategy to promote tour business. Insufficient funds and monetary investment into setting up eco-friendly facilities.	Eco-friendly development program.
--	------------------	---	---	--	---

Г

appropriately in the process.									
Organise discussion sessions to present acquired scientific results to compliment and discuss action plans for the conservation of marine resources in the waters of Mantanani	Mantanani and in the district of Kota Belud, Sabah.	High	~ £ 1,000 logistic expenses. ~ £ 1,000 for results publishing expenses.	5 years	NGOs, local and federal authorities	Discussion sessions held with the government authorities and the community leaders of Mantanani community. Compilated results of the in-water monitoring programs submitted and reviewed by the panels of the Sabah Parks Board of Trustees.	Interrupted events that hinder data collection in the local monitoring programs, causing incomplete data used for analyses. This will result to inaccurate outcomes being submitted for the review process. Risk of the submitted reports not reviewed by the panels in the decision-making process.	Conservation action program.	

Policy drafting to highlight and protect marine turtle foraging hotspots and zoning of boat restriction areas for reduce boat strike as a threat to marine turtles.	Mantanani, Sabah	~ £ 2,000 field expenses for logistic and accommodation, boat rental, etc.	1 year	NGOs, local and federal authorities, community members	Community-led conservation initiatives focusing on the marine turtle hotspot areas. Policy draft and enforcement action plan for the conservation of marine turtles.	Zoning areas conflict with the local fishing grounds and common boat areas. Insufficient results from the varies aspects of the actual context for the implementation of zoning sensitive areas for the conservation of marine turtles.	Regulations, and enforcement of legislations.
--	---------------------	--	--------	--	--	---	---

3. LITERATURE CITED

- Adnyana W, 2003. Preliminary assessment of Berau green turtle population. Report to WWF Indonesia Turtle Program. 21 pp.
- Adnyana W, Soede L, Gearheart G, & Halim M, 2008. Status of green turtle (*Chelonia mydas*) nesting and foraging populations of Berau, East Kalimantan, Indonesia, including results from tagging and telemetry. Indian Ocean Turtle Newsletter, 7: 2-11.
- Ahmad A, Zulkifli T, Paul B, & James B, 2004. Marine fishery resources development and management department (MFRDMD), Southeast Asian Fisheries Development Center (SEAFDEC). In: Conservation and Enhancement of Sea Turtles in the Southeast Asian Region (Zulkifli T, Ahmad A, Ku-Kassim KY, Mahyam MI, Eds.). Marine Fishery Development and Management Department Kuala Terengganu, Malaysia. 61-94 pp.
- Al-Kindi A, Mahmoud I, Al-Kiyumi A, Al-Bahry S, Elshafie A, & Al-Siyabi S, 2008. The status of the nesting population of the green turtle (*Chelonia mydas*) during low and high nesting periods in 2006 and 2007 with reference to cyclone Gonu in Ras al-Hadd, Oman. (K. Dean, & M. López-Castro, Eds.) Proceedings of the Twenty-Eighth Annual Symposium on Sea Turtle Biology and Conservation. NOAA Technical Memorandum NOAA NMFS-SEFSC-602. 158pp.
- Allen MS, 2007. Three millennia of human and sea turtle interactions in remote Oceania. Coral Reefs, 26: 959-970.
- Almeida A, Moreira L, Bruno S, Thomé J, Martins A, Bolten AB, & Bjorndal K, 2011.
 Green turtle nesting on Trindade Island, Brazil: abundance, trends, and biometrics. Endangered Species Research, 14: 193-201. doi: 10.3354/esr00357.

- Al-Merghani M, Miller J, Pilcher N, & Al-Mansi A, 2000. The green and hawksbill turtles in the Kingdom of Saudi Arabia: synopsis of nesting studies 1986-1997. Fauna of Arabia, 18: 369-384.
- Araujo G, Legaspi C, Ferber S, Murray R, Burdett K, Grundy S, Labaja J, Snow S, Yaptinchay A, & Ponzo, A, 2019. In-water methods reveal population dynamics of a green turtle *Chelonia mydas* foraging aggregation in the Philippines. Endangered Species Research, 40: 207-218. doi: 10.3354/esr00989.
- Arthur KE & Balazs GH, 2008. A comparison of immature green turtle (*Chelonia mydas*) diets among seven sites in the main Hawaiian Islands. Pacific Science, 62(2): 205-217.
- Bagarinao TU, 2011. The sea turtles captured by coastal fisheries in the Northeastern Sulu Sea, Philippines: documentation, care, and release. Herpetological Conservation and Biology, 6(3): 353-363.
- Baker DJ, Littnan LC, & Johnston WD, 2006. Potential effects of sea level rise on the terrestrial habitats of endangered and endemic megafauna in the North-western Hawaiian Islands. Endangered Species Research, 2(1): 21-30. doi: 10.3354/esr002021.
- Balazs G, & Chaloupka M, 2004. Thirty-year recovery trend in the once depleted Hawaiian green sea turtle stock. Biological Conservation, 117(5): 491-498. doi: 10.1016/j.biocon.2003.08.008.
- Barbosa C, Broderick A, & Catry P, 1998. Marine turtles in the Orango National Park (Bijagós Archipelago, Guinea-Bissau). Marine Turtle Newsletter, 81: 6-7.
- Basintal, P. (2002). Sea turtle conservation at the Sabah's Turtle Islands Park, Malaysia. 151-161. (I. Kinan, Ed.) Honolulu, HI: Western Pacific Regional Fishery Management Council, Honolulu, Hawaii, USA: Proceedings of the

Western Pacific Sea Turtle Cooperative Research and Management Workshop. February 5-8, 2002.

- Bellini C, & Sanches T, 1996. Reproduction and feeding of marine turtles in the Fernando de Noronha Archipelago, Brazil. Marine Turtle Newsletter, 74: 12-13.
- Bellini C, Marcovaldi M, Sanches T, Grossman A, & Saks G, 1996. Atol das Rocas Biological Reserve: second largest Chelonia rookery in Brazil. Marine Turtle Newsletter, 72: 1-2.
- Bjorndal K, Bolten A, & Chaloupka M, 2005. Evaluating trends in abundance of immature green turtles, *Chelonia mydas*, in the greater Caribbean. Ecological Applications, 15(1): 304-314. doi: 10.1890/04-0059
- Bjorndal K, Wetherall J, Bolten A, & Mortimer J, 1999. Twenty-six years of green turtle nesting at Tortuguero, Costa Rica: an encouraging trend. Conservation Biology, 13(1): 126-134.
- Bjorndal KA, Jackson JBC, 2002. Roles of sea turtles in marine ecosystems: reconstructing the past. In: The Biology of Sea turtles, Volume II. (Lutz PL, Musick JA, Wyneken J, Eds.). CRC Press Boca Raton, FL. 455 pp.
- Blanco G, Morreale S, Bailey H, Seminoff J, Paladino F, & Spotila J, 2012. Postnesting movements and feeding grounds of a resident East Pacific green turtle *Chelonia mydas* population from Costa Rica. Endangered Species Research, 18: 233-245. doi:10.3354/esr00451.
- Bolten AB, 2003. Variation in sea turtle life history patterns: Neritic vs. oceanic developmental stages. In: The Biology of Sea Turtles, Volume II. (Lutz PL, Musick JA, Wyneken J, Eds.). CRC Press Boca Raton, FL. 455 pp.
- Bourjea J, Farppier J, Quillard M, Ciccione S, Roos D, Hughes G, & Grizel H, 2007. Mayotte Island: another important green turtle nesting site in the southwest

Indian Ocean. Endangered Species Research, 3: 273-282. doi:10.3354/esr00053.

- Bowen BW, Meylan AB, Ross JP, Limpus CJ, Balazs GH, & Avise JC, 1992. Global population structure and natural history of the green turtle (*Chelonia mydas*) in terms of matriarchal phylogeny. Evolution, 46(4): 865-881. doi: 10.1111/j.1558-5646.1992.tb00605.x.
- Bowen BW, Bass AL, Soares L, & Toonen RJ, 2005. Conservation implications of complex population structure: lessons from the loggerhead turtle (*Caretta caretta*). Molecular Ecology, 14(8): 2389-2402. doi: 10.1111/j.1365-294X.2005.02598.x.
- Broderick A, Frauenstein R, Glen F, Hays G, Jackson A, Pelembe T., Ruxton GD, & Godley BJ, 2006. Are green turtles globally endangered? Global Ecology and Biogeography, 15(1): 21-26. doi:10.1111/j.1466-822X.2006.00195.x.
- Burton A., 2012. Glad tidings for green sea turtles. Frontiers in Ecology and the Environment, 10(2): 63.
- Camacho M, Calabuig P, Luzardo OP, Boada LD, Zumbado M, & Orós, 2013. Crude oil as a stranding cause among loggerhead sea turtles (Caretta caretta) in the Canary Islands, Spain (1998-2011). Journal of Wildlife Diseases, 49(3): 637-640. doi: 10.7589/2012-03-093.
- Chaloupka M, Bjorndal K, Balazs G, Bolten A, Ehrhart L, Limpus C, Suganuma H, Troëng S, & Yamaguchi M, 2008. Encouraging outlook for recovery of a once severely exploited marine megaherbivore. Global Ecology and Biogeography, 17(2): 297-304. doi: 10.1111/j.1466-8238.2007.00367.x
- Chan E, 2006. Marine turtles in Malaysia: on the verge of extinction? Aquatic Ecosystem Health & Management, 9(2): 175-184. doi:10.1080/14634980600701559.

- Chan EH, 2013. A report on the first 16 years of a long-term marine turtle conservation project in Malaysia. Asian Journal of Conservation Biology, 2(2): 129-135.
- Christianen MJA, Herman PMJ, Bouma TJ, Lamers LPM, van Katwijk MM, van der Heide T, Mumby PJ, Silliman BR, Engelhard SL, van de Kerk M, Kiswara W, & van de Koppel J, 2014. Habitat collapse due to overgrazing threatens turtle conservation in marine protected areas. Proceedings of the Royal Society B, 281: 20132890. doi: 10.1098/rspb.2013.2890.
- Cruz RD, 2004. Philippines. In: Conservation and Enhancement of Sea Turtles in the Southeast Asian Region (Zulkifli T, Ahmad A, Ku-Kassim KY & Mahyam MI, Eds.). SEAFDEC Marine Fishery Resources Development and Management Department, Kuala Terengganu, Malaysia. 7-29 pp.
- Delgado-Trejo C, & Alvarado-Figueroa J, 2012. Current conservation status of the black sea turtle in Michoacan, Mexico. In: Sea Turtles of the Eastern Pacific (J. Seminoff, & B. Wallace, Eds.). University of Arizona Press. 364-378 pp.
- Dethmers K, Broderick D, Moritz C, Fitzsimmons N, Limpus C, Lavery S, Whiting S, Guinea M, Prince MIT, & Kennett R, 2006. The genetic structure of Australasian green turtles (*Chelonia mydas*): exploring the geographical scale of genetic exchange. Molecular Ecology, 15: 3931-3946. doi:10.1111/j.1365-294X.2006.03070.x.
- Duncan EM, Botterell ZLR, Broderick AC, Galloway TS, Lindeque PK, Nuno A, & Godley BJ, 2017. A global review of marine turtle entanglement in anthropogenic debris: a baseline for further action. Endangered Species Research, 34: 431-448. doi: 10.3354/esr00865.
- Dutton PH, Roden SE, Stewart KR, LaCasella E, Tiwari M, Formia A, Thomé JC, Livingstone SR, Eckert S, Chacon-Chaverri D, Rivalan P, & Allman P, 2013.

Population stock structure of leatherback turtles (*Dermochelys coriacea*) in the Atlantic revealed using mtDNA and microsatellite markers. Conservation Genetics, 14: 625-636. doi: 10.1007/s10592-013-0456-0.

- Eckert KL, 1999. Designing a conservation program. In: Research and Management Techniques for the Conservation of Sea Turtles (Eckert KL, Bjourndal KA, Abreu-Grobois FA, Donnelly M, Eds.). Publication No. 4. IUCN/SSC Marine Turtle Specialist Group, Washington, DC. 6-8 pp.
- Fish MR, Côté IM, Horrock JA, Mulligand B, Watkinson AR, & Jones AP, 2008. Construction setback regulations and sea-level: mitigating sea turtle nesting beach loss. Ocean and Coastal Management, 51(4): 330-341. doi: 10.1016/j.ocecoaman.2007.09.002.

Fisheries Act 1985. The Commissioner of Law Revision, Malaysia.

- FitzSimmons NN, Moritz C, Limpus CJ, Pope L, & Prince R, 1997. Geographic structure of mitochondrial and nuclear gene polymorphisms in Australian green turtle populations and male-biased gene flow. Genetics Society of America, 147: 1843-1854.
- Fonseca L, Tomillo P, Villachica W, Quirós W, Pesquero M, Heidemeyer M, Joyce F, Plotkin PT, Seminoff JA, Matarrita ER, & Valverde RA, 2018. Discovery of a major east pacific green turtle (*Chelonia mydas*) nesting population in northwest Costa Rica. Chelonian Conservation and Biology, 17(2): 169-176. doi:10.2744/CCB-1264.1.
- Fortes O, Pires A, & Bellini C, 1998. Green turtle, Chelonia mydas in the Island of Poilão, Bolama-Bijagós Archipelago, Guinea-Bissau, West Africa. Marine Turtle Newsletter, 80: 8-10.
- Frazier J, & Salas S, 1984. The status of marine turtles in the Egyptian Red Sea. Biological Conservation, 30(1): 41-67. doi:10.1016/0006-3207(84)90019-3.

- Frazier J., 1985. Marine turtles in the Comoro Archipelago. North-Holland Publishing, Amsterdam, Oxford, New York. 177 pp.
- Ghazali AF, NR Jamil, 2019. Population and trend analysis for green turtle (*Chelonia mydas*) and hawksbill turtle (*Eretmochelys imbricata*) in Marine Park Centre Redang, Terengganu and Marine Park Centre Rusukan Besar, Labuan, Malaysia. Pertanika Journal of Science & Technology, 27(3): 1061-1076.
- Gilkes L, & Adipati E, 1987. Kawasan konservasi laut teluk Cenderawasih Irian Jaya, Rencana Pengelolaan 1988-1992. Proyek WWF/IUCN No. 3770, Bogor.
- Godfrey M, Barreto R, & Mrosovsky N, 1996. Estimating past and present sex ratios of sea turtles in Suriname. Canadian Journal of Zoology, 74(2): 267-277. doi:10.1139/z96-033.
- Godley, B.J., Broderick, A.C., Hays, G.C., 2001. Nesting of green turtles (*Chelonia mydas*) at Ascension Island, South Atlantic. Biological Conservation 97, 151–158.
- Groombridge B, & Luxmoore R, 1989. The green turtle and hawksbill (Reptilia: Cheloniidae): world status, exploitation and trade. Convention on International Trade in Endangered Species of Wild Fauna and Flora, Lausanne. 601 pp.
- Hanafy M, 2012. Nesting of marine turtles on the Egyptian beaches of the Red Sea. Egyptian Journal of Aquatic Biology and Fisheries, 16(2): 59-71. doi:10.21608/EJABF.2012.2125.
- Hawkes LA, Broderick AC, Godfrey MH, & Godley BJ, 2007. Investigating the potential impacts of climate change on a marine turtle population. Global Change Biology, 13: 923-932. doi: j.1365-2486.2006.01320.x.

- Hawkes LA, Broderick AC, Godfrey MH, & Godley BJ, 2009. Climate change and marine turtles. Endangered Species Research, 7: 137-154. doi: 10.3354/esr00198.
- Hernandez-Guzmán, V.C. (2003): Temporada de anidación 2003 de tortugas marinas en isla Aguada, Campeche, México, y panorama estatal. In: Informe técnico final isla Aguada. Programa nacional de tortugas marinas. Direccion General de Fauna Silvestre, Mexico.
- Hirth HF, 1971. Synopsis of biological data on the green turtle, *Chelonia mydas* (Linnaeus) 1758. FAO Fisheries Synopsis No. 85.
- Hirth HF, 1980. Some aspects of the nesting behavior and reproductive biology of sea turtles. American Zoologist, 20: 507-523.
- Hirth H, 1997. Synopsis of the biological data on the green turtle *Chelonia mydas* (Linnaeus 1758). FAO Fisheries Synopsis No. 85, Food and Agriculture Organization of the United Nations, Rome. 74 pp.
- Hurtado M, 1984. Registros de anidación de la tortuga negra, *Chelonia mydas*, en las Islas. Boletin Científico y Tecnico, 4: 77-106.
- IAC, 2019. Declining trend in green turtle (*Chelonia mydas*) nesting in the southeastern Pacific: potential causes and recommendations for action.Inter-American Convention for the Protection and Conservation of Sea Turtles. 15 pp.
- Innocenzi J, Maury J, M'soili A, & Ciccione S, 2010. Reproduction biology of green turtle in Itsamia, Mohéli (Union of Comoros). Indian Ocean Turtle Newsletter, 11: 5-7.
- Jensen MP, FitzSimmons NN, Dutton PH, 2013. Molecular genetics of sea turtles. In: The Biology of Sea Turtles, Volume 3 (Wyneken J, Lohmann KJ, Musick, JA, Eds.). CRC Press, Boca Raton, FL. 135-154 pp.

- Jolis G, Lau MM, Mustafa SRS, Sumampouw M, Rajan SG, Jumin R, & Sharma DSL, 2015. Sea turtle conservation in Malaysia: issues, challenges and recommendations. Marine Programme, WWF-Malaysia (Conference paper). 6 pp.
- Joseph J, Chong J, & Shaw PW, 2017. Multiple paternity in egg clutches of green turtles in Redang Island and Sabah Turtle Islands Park, Malaysia. Journal of Sustainability Science and Management, 12(1): 12-22.
- Lauret-Stepler M, Bourjea J, Roos D, Pelletier D, Ryan P, Ciccione S, & Grizel H, 2007. Reproductive seasonality and trend of *Chelonia mydas* in the SW Indian Ocean: a 20 yr study based on track counts. Endangered Species Research, 3: 217-227. doi:10.3354/esr003217.
- Limpus C, 2009. A biological review of Australian marine turtle species. 2. Green turtle, *Chelonia mydas* (Linnaeus). DERM, The State of Queensland, Environmental Protection Agency.
- Limpus C, Miller J, Parmenter C, Reiner D, Mclachlan N, & Webb R, 1992. Migration of green (*Chelonia mydas*) and loggerhead (*Caretta caretta*) turtles to and from east Australian rookeries. Wildlife Research, 19: 347-358.
- Limpus C, Miller J, Parmenter CJ, & Limpus D, 2003. The green turtle, *Chelonia mydas*, population of Raine Island and the northern Great Barrier Reef: 1843-2001. Memoirs Queensland Museum, 49(1): 349-440.
- Lindsay C, & Watson L, 1995. Turtle Islands: Balinese Ritual and the green turtle. Takarajima Books, 200 Varick Street, New York 10014. 123 pp.
- López-Castro MC, Koch V, Mariscal-Loza A, & Nichols WJ, 2010. Long-term monitoring of black turtles *Chelonia mydas* at coastal foraging areas off the Baja California Peninsula. Endangered Species Research, 11: 35-45. doi: 10.3354/esr00264.

- Lutcavage MR, Plotkin P, Witherington B, & Lutz PL, 1997. Human impact on sea turtle survival. In: The Biology of Sea Turtles (Lutz PL, Musick JA, Eds.). Boca Raton, CRC Press, FL. 387-411 pp.
- Marcovaldi M, & Marcovaldi G, 1999. Marine turtles of Brazil: the history and structure of Projeto TAMAR-IBAMA. Biological Conservation, 91: 35-41.
- Marsh H, O'Shea TJ, & Reynolds III JE, 2012. Ecology and conservation of the Sirenia: dugongs and manatees. Cambridge University Press, Cambridge, United Kingdom.
- Miller JD, 1985. Embryology of marine turtles. In: Biology of the Reptilia, Vol. 14 (Gans C, Billett F, Maderson PFA, Eds.). Wiley Interscience, New York. 271-328 pp.
- Miller J, 1989. Marine turtles, 1: an assessment of the conservation status of marine turtles in Saudi Arabia. Report no.9, MEPA Coastal and Marine Management Series. 209 pp.
- Mitchell NJ, Allendorf FW, Keall SN, Daugherty CH, & Nelson NJ, 2009. Demographic effects of temperature-dependent sex determination: will tuatara survive global warming? Global Change Biology, 16(1): 60-72. doi: 10.1111/j.1365-2486.2009.01964.x.
- Moreira L, Baptistotte C, Scalfone J, Thomé J, & Almeida A, 1995. Occurrence of *Chelonia mydas* on the Island of Trindade, Brazil. Marine Turtle Newsletter, 70: 2.
- Mortimer J, & Carr A, 1987. Reproduction and migrations of the Ascension Island green turtle (*Chelonia mydas*). Copeia, 1987(1): 103-113. doi:10.2307/1446043.
- Mortimer J, 2012. Seasonality of green turtle (*Chelonia mydas*) reproduction at Aldabra Atoll, Seychelles (1980-2011) in the regional context of the Western

Indian Ocean. Chelonian Conservation and Biology, 11: 170-181. doi:10.2744/CCB-0941.1.

- Mortimer J, Brandis R, Liljevik A, Chapman R, & Collie J, 2011. Fall and rise of nesting green turtles (*Chelonia mydas*) at Aldabra Atoll, Seychelles: positive response to four decades of protection (1968-2008). Chelonian Conservation and Biology, 10(2): 165-176. doi:10.2744/CCB-0872.1.
- Mrosovsky N, Dutton P, & Whitmore C, 1984. Sex ratios of two species of sea turtle nesting in Suriname. Canadian Journal of Zoology, 62(11): 2227-2239. doi:10.1139/z84-324.
- Musick JA, Limpus CJ, 1997. Habitat utilization and migration in juvenile sea turtles. In: The Biology of Sea Turtles (Lutz PL, Musick JA, Eds.). CRC Press. 137-163 pp.
- PERSGA, 2003. Marine turtles in the Republic of Djibouti. PERSGA, Jeddah.
- PERSGA, 2003. Marine turtles on the Egyptian coast of the Red Sea. PERSGA, Jeddah.
- PERSGA/GEF, 2004. Regional action plan for the conservation of marine turtles and their habitats in the Red Sea and Gulf of Aden. PERSGA, Jeddah.
- Phillott D, & Rees A, (Eds.) 2019. Sea turtles in the Middle East and South Asia. MTSG Annual Regional Report 2019. 245 pp.
- Pilcher N, & Al-Merghani M, 2000. Reproductive biology of the green turtle *Chelonia mydas* at Ras Baridi, Saudi Arabia. Herpetological Review, 31(3): 142-147.
- Pilcher N, 1999. Cement dust pollution as a cause of sea turtle hatchling mortality at Ras Baridi, Saudi Arabia. Marine Pollution Bulletin, 38(11): 966-969. doi:10.1016/S0025-326X(99)00110-1.

- Prince R, 2000. The Western Australian marine turtle project. In: Sea Turtles of the Indo-Pacific: Research Management and Conservation. (N. Pilcher, & G. Ismail, Eds.) ASEAN Acedemic Press, London. 94-99 pp.
- Prince R, 2003. The western Australian marine turtle project. In: Ningaloo Marine Turtle Conference, Proceedings and Presentations by Speakers. Recreation Centre Exmouth. 26 pp.
- Reece J, Alansari A, Kalkvik H, Alkindi A, Mahmoud I, Al Kiyumi AY, Elshafie AE, Jensen MP, & Parkinson CL, 2016. A survey of the genetic diversity of the loggerhead and green sea turtles of the Sultanate of Oman. Bulletin of the Florida Museum of Natural History, 54(6): 104-117.
- Roden SE, Morin PA, Frey A, Balazs GH, Zarate P, Cheng IJ, & Dutton PH, 2013. Green turtle population structure in the Pacific: new insights from single nucleotide polymorphisms and microsatellites. Endangered Species Research, 20: 227-234. doi: 10.3354/esr00500.
- Ross J, & Barwani M, 1982. Review of sea turtles in the Arabian area. In: Biology and Conservation of Sea Turtles (K. Bjorndal, Ed.) Smithsonian Institute Press, Washington, DC. 373-383 pp.
- Sagun V, 2002. Updates on marine turtle conservation in the Philippines. In: Proceedings of the 3rd Workshop on SEASTAR (2000) 87-93 pp.
- Sagun V, 2004. Postnesting movements of green turtles tagged in the Turtle Islands Tawi-Tawi, Philippines. Marine Turtle Newsletter, 104: 5-7.
- Salleh SM, M Yobe, SA Sah, 2012. The distribution and conservation status of green turtles (*Chelonia mydas*) and olive ridley turtles (*Lepidochelys olivacea*) on Pulau Pinang beaches (Malaysia), 1995-2009. Tropical Life Sciences Research, 23(1): 63-76.

- Salm R, Petocz R, & Soehartono T, 1982. Survey on coastal area in Irian Jaya. UNDP/FAO National Park Development Project WWF Indonesia Programme, Jakarta. 25 pp.
- Santos RG, Martins AS, Farias JN, Horta PA, Pinheiro HT, Torezani E, Baptistotte C, Seminoff JA, Balazs GH, & Work TM, 2011. Coastal habitat degradation and green sea turtle diets in Southeastern Brazil. Marine Pollution Bulletin, 62(6): 1297-1302. doi: 10.1016/j.marpolbul.2011.03.004.
- Schofield G, Scott R, Katselidis KA, Mazaris AD, & Hays GC, 2015. Quantifying wildlife-watching ecotourism intensity on an endangered marine vertebrate. Animal Conservation, 18(6): 517-528. doi: 10.1111/acv.12202.
- Schulz, J. (1975). Sea turtles nesting in Surinam. Zoologische Verhandelingen, 143: 1-143.
- Seminoff JA, 2004. *Chelonia mydas*. The IUCN Red List of Threatened Species 2004: e.T4615A11037468. doi: 10.2305/IUCN.UK.2004.RLTS.T4615A11037468.en.
- Seminoff J, Allen C, Balazs G, Dutton P, Eguchi T, Haas H, Hargrove SA, Jensen M, Klemm DL, Lauritsen AM, MacPherson SL, Opay P, Possardt EE, Pultz S, Seney E, Houtan KSV, & RS Waples, 2015. Status review of the green turtle (*Chelonia mydas*) under the endangered species act. NOAA Technical Memorandum, NOAA-NMFS-SWFSC-539. 571 pp.
- Spotila JR, & Standora EA, 1985. Environmental constraints on the thermal energetics of sea turtles. Copeia, 1985: 694-702.
- Tapilatu R, Wona H, & Batubara P, 2017. Status of sea turtle populations and its conservation at Bird's Head Seascape, Western Papua, Indonesia. Biodiversitas, 18(1): 129-136. doi: 10.13057/biodiv/d180119.

- Telemeco RS, Elphick MJ, & Shine R, 2009. Nesting lizards (*Bassiana duperreyi*) compensate partly, but not completely, for climate change. Ecology, 90(1): 17-22. doi: 10.1890/08-1452.1.
- Troéng S, & Rankin E, 2005. Long-term conservation efforts contribute to positive green turtle *Chelonia mydas* nesting trend at Tortuguero, Costa Rica. Biological Conservation, 121(1): 111-116. doi: 10.1016/j.biocon.2004.04.014.
- Trono R, 1991. Philippine marine turtle conservation program. Marine Turtle Newsletter, 53: 5-7.
- Unsworth RKF, McKenzie LJ, Collier CJ, Cullen-Unsworth LC, Duarte CM, Eklöf JS, Jarvis JC, Jones BL, & Nordlund LM, 2018. Global challenges for seagrass conservation. Ambio, 48: 801-815.
- Vegter AC, Barletta M, Beck C, Borrero J, Burton H, Campbell ML, Costa MF, Eriksen M, Eriksson C, Estrades A, Gilardi KVK, Hardesty BD, Ivar do Sul JA, Lavers JL, Lazar B, Lebreton L, Nichols WJ, Ribic CA, Ryan PG, Schuyler QA, Smith SDA, Takada H, Townsend KA, Wabnitz CCC, Wilcox C, Young LC, & Hamann M, 2014. Global research priorities to mitigate plastic pollution impacts on marine wildlife. Endangered Species Research, 25: 225-247. doi: 10.3354/esr00623.
- Weber SB, Weber N, Ellick J, Avery A, Frauenstein R, Godley BJ, Sim J, Williams N, & Broderick AC, 2014. Recovery of the South Atlantic's largest green turtle nesting population. Biodiversity and Conservation, 23: 3005-3018. doi:10.1007/s10531-014-0759-6.
- Weijerman M, van Tienen LHG, Schouten AD, Hoekert WEJ (1998) Sea turtles of Galibi, Suriname. In: Proceedings of the Sixteenth Annual Symposium on Sea Turtle Biology and Conservation (Byles R, Fernandez Y, Comps). NOAA Tech Memo NMFS-SEFSC-412. 142-144 pp.

- Wilcox C, Hardesty BD, Sharples R, Griffin DA, Lawson TJ, & Gunn R, 2013. Ghostnet impacts on globally threatened turtles, a spatial risk analysis for northern Australia. Conservation Letters 6(4): 247-254. doi: 10.1111/conl.12001.
- Witherington, B.E., Koeppel, C.M., 2000. Sea turtle nesting in Florida, USA, during the decade 1989–1998: an analysis of trends. In: Nineteenth Annual Symposium on Sea Turtle Conservation and Biology. NOAA Tech. Memo. NMFS-SEFSC-443. 94-96 pp.
- WWF Indonesia, 1997. The marine biodiversity of Cenderawasih Bay Marine National Park. WWF Indonesia, Jakarta.
- Wyneken J, 2001. The anatomy of sea turtles. NOAA Technical Memorandum NMFS-SEFSC-470.
- Xavier R, Barata A, Cortez L, Queiroz N, & Cuevas E, 2006. Hawksbill turtle (*Eretmochelys imbricata* Linnaeus 1766) and green turtle (*Chelonia mydas* Linnaeus 1754) nesting activity (2002-2004) at El Cuyo beach, Mexico. Amphibia-Reptilia, 27: 539-547. doi:10.1163/156853806778877077.
- Yaghmour F, 2019. Are oil spills a key mortality factor for marine turtles from the eastern coast of the United Arab Emirates? Marine Pollution Bulletin 149: 110624. doi: 10.1016/j.marpolbul.2019.110624.
- Zárate P, Cahoon S, Contato M, Dutton P, & Seminoff J, 2006. Nesting beach monitoring of green turtles in the Galapagos Islands: a 4-year evaluation. In: Twenty Sixth Annual Symposium on Sea Turtle Biology and Conservation. (M. Frick, A. Panagopoulou, A. Rees, & K. Williams, Eds.) International Sea Turtle Society, Athens, Greece. 337 pp.
- Zavaleta-Lizárraga L, JE Morales-Mávil, 2013. Nest site selection by the green turtle (*Chelonia mydas*) in a beach of the north of Veracruz, Mexico. Revista Mexicana de Biodiversidad 84: 927-937. doi: 10.7550/rmb.31913.

